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Abstract. We present here an application of the augmented-space recursion technique for
binary disordered alloys. The method allows us to incorporate effects like clustering, short-
ranged order and off-diagonal disorder arising out of size mismatch and consequent lattice
distortions. We base our calculations on the TB-LMTO Hamiltonian of Andersen and co-
workers. We study three alloy systems: AgPd, CuZn and FeTi, and compare our results with
earlier work.

1. Introduction

The first-principles description of the electronic structure and properties of disordered
transition metal alloys is a challenging problem. The absence of translational symmetry
is the main obstacle in the construction of a quantitative theory comparable in accuracy
and efficiency with those for crystalline solids, based on the Bloch theorem and standard
band-structure methods. The electronic structure and properties of transition metal alloys
are believed to be governed mainly by the relatively localized d electrons. Hence it was
customary to use semi-empirical tight-binding Hamiltonians to describe their electronic
properties. In spite of encouraging successes, the electronic structure calculations based on
semi-empirical tight-binding Hamiltonians have some underlying approximations which are
often unjustified [1].

The main step towards constructing first-principles tight-binding Hamiltonians began
with the tight-binding linearized muffin-tin orbital (TB-LMTO) method proposed by
Andersen and Jepsen [2]. In the TB-LMTO method the Hamiltonian is parametrized with
a set of potential parameters (to be discussed later in the text) which are derived self-
consistently from a first-principles theory and are not empirical.

The other central issue for a first-principles calculation is the construction of realistic
structural models. In principle, the structure can be varied in parallel to the calculation of
electronic structure. This has been reformulated in terms of classical Lagrangian dynamics
by Car and Parinello [3]. This method has been extensively used inab initio molecular
dynamics simulations of liquid and amorphous Si and other s–p-bonded systems, but the
underlying pseudopotential method makes its application to systems with transition metals
impractical. Recently there have been attempts atab initio molecular dynamics studies
based on the full-potential LMTO method. Methfessel and Schilfgaarde [4] have derived
an accurate force theorem, quite distinct from the Hellmann–Feynman theorem. They
have implemented a Car–Parinello type of dynamics in a new full-potential LMTO method,
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which is suitable for arbitrary geometries, and calculated the properties of small Ag clusters.
Though first-principles electronic structure calculations for topologically disordered systems
demand realistic structural models, for substitutionally disordered transition metal alloys
calculations in the TB-LMTO framework are regarded to be first-principles ones.

Kudrnovsḱy and Drchal [5] have demonstrated that the coherent potential approximation
(CPA) based on the linearized version of the screened KKR model (the TB-LMTO
method) accurately describes the electronic structure of random alloys (both metallic and
semiconducting) and disordered surfaces for a large class of alloy systems. Within the
TB-LMTO method full charge self-consistency can be achieved and is usually used for
elements, compounds and ordered alloys. Kudrnovský et al [6] have demonstrated that
the flexibility in the choice of Wigner–Seitz radii in random binary alloys makes possible
approximate, yet accurate and consistent, treatment of charge self-consistency without going
through the full charge self-consistency cycle. The self-consistency involved in the solution
of the CPA equation is not trivial and one has to invoke subtle mathematical procedures to
ensure proper convergence. Recently Singh and Gonis [7] have criticized the TB-LMTO-
CPA proposed by Kudrnovský and Drchal on the grounds that the ensemble or configuration
averaging involved in their method did not properly take into account the multisite nature of
the TB-LMTO basis functions, resulting in an inconsistency in the configuration-averaged
Green function. Although these authors try to circumvent this difficulty by making a pure
L-approximation for the site-diagonal LMTOs, the fact remains that, by its very nature, the
TB-LMTO formalism involves multisite summations.

Formally the APW [8] and the KKR methods [9], the ‘parents’ of the LAPW [10] and the
LMTO methods [11] respectively, involve very few uncontrolled approximations and are
therefore expected to be superior in accuracy and reliability to their linearized variants.
However, solving the non-linear secular equations involved is computationally costly.
Extensions of these methods to disordered systems further emphasize the computational
difficulties. Of the mean-field approaches, the single-site CPA has been successfully
implemented within these frameworks [12]. Certainly, where the single-site approximation
is valid, the APW and KKR-CPA methods are the most accurate and reliable ones. However,
there are many situations where such single-site approximations begin to fail—such as in
cases where clustering effects become important [13] (e.g., in the impurity bands of split-
band alloys, like the Zn band in Cu-rich CuZn alloys), where short-range order dominates
leading to ordering or segregation [14], where local lattice distortions arising because of size
mismatch of the constituents lead to essential off-diagonal disorder in the structure matrix
SRL,R′L′ [15] (as in CuPd or CuBe alloys), and where topological disorder of the underlying
lattice makes the structure matrix depend on the specific pair of sites{R, R′} [16] (such
as in glassy materials like FeB). In such situations, the generalization of the CPA is not
a trivial problem [13]. The embedded-cluster method (ECM) [17] where a cluster, in all
its various disordered configurations, is embedded in a CPA medium, is not self-consistent
in the spirit of CPAs. The molecular CPA [18] breaks the translational symmetry of the
averaged medium, and the artificial zone-boundary effects introduced cannot be controlled.
Of the cluster generalizations, only two retainherglotzanalytic properties: the travelling-
cluster approximation (TCA) [19] and the cluster CPA (CCPA) [20], both based on the
augmented-space formalism (ASF) [21], which is also the basis of the work presented here.
The computational intractability of both these methods whenever the size of the cluster
becomes even reasonably large is clearly perceived by reference to [19, 20]. To date,
calculations using the KKR-based CCPA have been successfully carried out only on pair
clusters [22].

This provides a motivation for looking for alternative approaches for the generalization
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of the single-site approximation. The TB-LMTO method is a likely framework. The purpose
of this communication is to propose and implement a method which is based on the ASF
[21] introduced by one of us, coupled with the recursion method of Haydock, Heine and
Kelly [23]. This method retains theherglotzproperties of the configuration-averaged Green
function. The coupling to the recursion method allows effects of quite large clusters to
be taken into account. Since the recursion method is intrinsically multisite, off-diagonal
disorder and the multisite nature of the LMTOs is not a problem. We shall demonstrate that
the use of local point group symmetries of the underlying lattice and the larger symmetries
in the full augmented space arising out of the homogeneity of the disorder allows us to work
on an irreducible subspace of the augmented space with vastly reduced rank and makes the
method tractable even on small desktop workstations.

The paper is organized as follows: in section 2 we briefly review the TB-LMTO
method required for the purpose of augmented recursion. In section 3 we discuss the
real-space recursion for calculating the Green function, with an emphasis on the symmetry
properties which can be exploited to reduce the workload of computation. In section 4 we
briefly discuss the augmented-space theorem for the calculation of configuration averages
of any function of random variables. Section 5 is devoted to the detailed discussion of the
augmented-space recursion method of calculating the configuration-averaged Green function.
In section 6 we discuss our results for AgPd, CuZn and FeTi alloys. Conclusions and
additional comments regarding the further refinement of our method are given in section 7.

2. Electronic structure calculations with the tight-binding LMTO method

In the LMTO method, an energy-independent basis setχRL(rR) is derived from the energy-
dependent partial waves in the form of the muffin-tin orbitals (MTOs). The set is constructed
in such a way that it has the following characteristics: (a) it is appropriate to the one-electron
effective potentialV (r) of the solid; (b) it is a minimal basis set; and (c) it is continuous
and singly differentiable over all space. In this section we will restrict ourselves to the most
tight-binding representation of the LMTO, resulting in a sparse Hamiltonian, required for
the purpose of augmented-space recursion.

As a first step in the LMTO method, the space is partitioned into two regions: the
muffin-tin spheres centred at various atomic (if necessary, also interstitial) sitesR; and
the interstitial region. In the atomic-sphere approximation (ASA) the touching muffin-tin
spheres are substituted for with overlapping Wigner–Seitz spheres, thereby dispensing with
the interstitial component. It has been argued that if the overlap between the Wigner–
Seitz spheres is less than 30% then the ASA is a good approximation and gives reliable
results [24].

In the most tight-binding representation, a LMTO basis orbital, with the collective
angular momenta indexL = (`m) centred at siteR, is given in the ASA by the expression

χα
RL(rR) = φRL(rR) +

∑
R′L′

φ̇α
R′L′h

α
RL,R′L′ (1)

whererR = r − R. The functionφRL is the solution of the wave equation inside the sphere
of radiusSR at R for some reference energyEνRL and is normalized within the sphere. The
potential inside the sphere is calculated using the local density functional approximation
(LDA). The radial part of theφ̇α

RL is related to the energy derivative ofφα
RL(rR) at the

reference energy

φ̇α
RL(rR) = φ̇RL(rR) + φRL(rR)oα

RL. (2)
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The quantityoα
RL = 〈φRL|φα.

RL〉 is the overlap. The expansion coefficientshα in equation
(1) are given by

hα
RL,R′L′ = (Cα

RL − EνRL)δRR′δLL′ + (1α
RL)1/2Sα

RL,R′L′(1
α
RL)1/2 (3)

whereCα
RL and1α

RL are the potential parameters obtained from the potential functionP α at
the reference energyEνRL. Sα

RL,R′L′ is the screened structure matrix whose elements in the
most tight-binding representation are essentially zero beyond the second shell of neighbours
in all close-packed structures. The screened structure matrixSα can be obtained from the
canonical structure matrixS0 via the unitary transformation

Sα = S0(1 − QαS0)−1. (4)

The set of parameters (screening constants)Qα which define the above transformation are
unique for all closely packed structures, and yield most localized structure constants with
exponential decay rather than the usual power-law behaviour.

There are several features of TB-LMTO orbitals which make them distinct from atomic
and atomic-like orbitals used in the ordinary TB calculations. The summation over the
composite angular momentum index in equation (1) suggests that the TB-LMTO orbitals do
not preserve pureL-character. Furthermore, in equation (1)φ̇α

RL(rR) andφα
RL are truncated

outside the Wigner–Seitz sphere and the expansion coefficients vanish beyond the second
shell of neighbours in all closed-packed structures, so all TB-LMTO orbitals are short
ranged, resulting in a sparse Hamiltonian in this representation. This is ideal for real-space
calculations based on the recursion method. The Hamiltonian and the overlap matrices for
this basis are given by (with the neglect of small terms)

H = h + hoh + (I + ho)Eν(I + oh) (5)

o = 〈χ |χ〉 = (I + ho)(I + ho). (6)

In equations (5) and (6) the summation indicesRL are suppressed for convenience. The
matrix o is diagonal in theRL-representation and its value is determined by the logarithmic
derivative of the functionφ̇ at the sphere boundary. The Löwdin orthonormalized
Hamiltonian in the ASA is given by

H(2) = Eν + h − hoh + hohoh − · · · (7)

and the first-order Hamiltonian is given by

H(1) = Eν + h. (8)

In equation (7) the parametero determines the degree of non-orthogonality of the basis.
Again o−1 has the dimension of energy and provides a measure of the energy window about
the reference energyEν for which the densities of states obtained withH(1) are reliable.

In order to perform a recursion calculation, we have to truncate the series given by
equation (7) for computational tractability. This in turn introduces non-orthogonality of the
basis, so one has to make a compromise between the two for reliable results. The recursion
involves repeated operation on the recursive basis withH(2). Sinceh is sparse, there is,
in principle, no additional difficulty (other than enhanced computational time) in going
beyond the first-order Hamiltonian. Recursion withH(1) gives a Green function accurate
to first order inE − Eν [24]. The second termhoh is necessary for systems with wide
bands, especially for s–p states. We have used a first-order Hamiltonian in our subsequent
calculations.
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3. The real-space recursion method

The real-space recursion method provides an efficient algorithm for the calculation of the
resolvent(zI − H)−1 of a sparse Hamiltonian. In this section we will review the recursion
method and demonstrate how the symmetry of the Hamiltonian can be exploited to reduce
the workload considerably. The method starts with a given vector,|u0〉, and recursively
generates a new set of vectors|ui〉, which are constructed so as to be mutually orthogonal:

H |un〉 = an|un〉 + bn+1|un+1〉 + bn|un−1〉 (9)

b2
0 = 〈u0|u0〉 an = 〈un|H |un〉 b2

n = 〈un|un〉/〈un−1|un−1〉
where the recursion coefficientsan andbn are the diagonal and off-diagonal elements of the
tridiagonal Hamiltonian matrix in the new representation. The method also yields an explicit
continued-fraction form for the diagonal elements of the resolvent (the Green function):

〈u0|(zI − H)−1|u0〉 = b2
0

E − a1 − b2
1

E − a2 − . . .

. (10)

In practice the continued fraction is evaluated to a finite number of steps. Haydock [25] has
mapped the contributions of the continued-fraction coefficients to self-avoiding walks on
the underlying space. He has shown that the dominant contribution comes from the walks
that wind round the initial starting state. This allows one to work only on the finite part of
the Hilbert space: a particularly sized cluster around the initial starting state. The continued
fraction is complemented after a finite number of stepsN with a suitable terminator. The
terminator reflects the asymptotic properties of the continued-fraction expansion of the
resolvent accurately. Several terminators are available in the literature and we have chosen
to use the terminator of Luchini and Nex [26]. The advantage of such a termination
procedure is that the approximate resolvent retains theherglotzproperties. It preserves the
first 2(N − 2) moments of the density of states exactly. This represents the effect of a
cluster at a distanceN −2 from the starting state. It also maintains the correct band widths,
band weights and singularity of the band edges. It is worth mentioning that, for a tight-
binding Hamiltonian, the recursion method involves a workload proportional to the size
of the system—rather than the cubic proportionality of the usual band-structure super-cell
methods, where the self-consistency is achieved at onek-point.

The workload of the recursion can be further reduced if one exploits the symmetry of the
Hamiltonian. The Hamiltonian described by (7) contains information on both the structure
of the underlying lattice and the symmetry of the orbitals. It has been shown by Gallagher
(see [27]) that if the starting state of the recursion belongs to an irreducible representation
of the Hamiltonian, then the states generated in the process of recursion belong to the same
row of the same irreducible representation of the Hamiltonian. Furthermore, recursions
with starting states corresponding to different rows of the same irreducible representation
are similar, but states belonging to the different irreducible representations or different rows
of the same irreducible representation do not mix; so we need to retain onlythosestates
for the purposes of recursion and yet will achieve the same resolution as we would if we
retained all of the states. The recursion is performed only with those states which are not
related to one another by the point group symmetry of the underlying lattice. Once these
state vectors are identified, the recursion can be performed in the reduced space, modified
with weighting factors. Thus in the computation we need far less storage and time because
the dimensionality of the matrixH is reduced drastically. In practice, a starting site is
chosen. The number of distinct equivalent sites, related to the starting site by the local



1984 T Saha et al

point group symmetry, constitutes the weighting of the starting site. As discussed earlier,
in the process of recursion, these equivalent sites are not considered, and the calculation is
confined only to non-equivalent sites. For example for an s-state Hamiltonian on a lattice
with cubic symmetry, all of the non-equivalent sites are confined to a (1/48)th portion of
the lattice. Inclusion of p orbitals introduces preferredx-, y- or z-directions and breaks the
symmetry among thex-, y- andz-axes. Thus the point group symmetry operations which
involve interchange amongx-, y- and z-coordinates are prohibited. Hence the irreducible
part of the lattice, instead of being (1/48)th of the lattice, now becomes (1/8)th. If to each
site R we attach weightWR, which is given by the number of basis states equivalent to
|R〉, then the whole process can be summarized as follows. In the new TB-LMTO reduced
basis we have

〈R, L|H |R, L〉 = Cα
R,L (11)

〈R′, L′|H |R, L〉 =
√

(WR/WR′)(1α
R′L′)

1/2Sα
R′,L′,R,L(1α

R,L)1/2βR(L, L′) (12)

whereR and R′ both belong to the irreducible part of the lattice.βR(L, L′) is a factor
which can be either 0 or 1, depending on whether the position occupied by the siteR

is a symmetry position with respect to orbitalsL and L′ or not. This fact can be made
more transparent in the following way: the structure matrix element connecting two orbitals
occupying the two different sites is given by the two-centre Slater–Koster integrals. Apart
from a factor made up ofπ - and σ -integrals the Slater–Koster integral contains a factor
made up of direction cosines of the vector joining the two basis states that the matrix
element is connecting. It reflects the symmetry property of the overlapping orbitals. Now
for the different equivalent sites connected to a given site, this direction cosine has different
signs. In the effective irreducible basis, which is a linear combination of the old basis states,
a particular linear combination may give rise to a zero Hamiltonian matrix element. We
shall call these positions, where such zero matrix elements occur, the symmetry positions
with respect to orbitalsL and L′. The representation of the Hamiltonian in terms of the
irreducible basis sets reduces the rank of the Hamiltonian matrix. The workload of the
recursion reduces drastically. Such a reduction is absolutely necessary for the purpose of
augmented-space recursion to be discussed in the following sections.

4. Augmented-space formalism

The augmented-space formalism enables one to deal with the problem of averaging
over disorder configurations. The formalism puts configuration averaging on the same
footing as quantum mechanical averaging by augmenting the Hilbert space spanned by the
wavefunctions with a disorder or configuration space spanned by the different realizations of
the random Hamiltonian. The method of configuration averaging by the augmented-space
theorem has been discussed earlier [21], and we shall restrict ourselves just to the salient
features of the method.

Let us suppose that the Hamiltonian describing a system is characterized by a set of
independent random variables{xi}. The probability density of{xi} is assumed to have finite
moments to all orders so that we may write

p(xi) = − 1

π
Im〈f i

0 |((xi + i0)I − M(i))−1|f i
0〉 (13)

where M(i) is an operator on the spaceφi
0 of rank N , spanned by theN possible

configurations ofxi ; and |f i
0〉 is the configurationground state. A suitable choice of the
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basis is one that makesMi tridiagonal. This tridiagonal representation may be immediately
obtained by looking at the continued-fraction expansion forp(xi):

p(xi) = − 1

π
Im

1

xi − a1 − b2
1 . . .

. (14)

Sincep(xi) > 0 and has finite moments to all orders, it always has a convergent continued-
fraction expansion with real coefficients{an, bn}. The representation ofM(i) hasai down
the diagonal andbi in the off-diagonal positions. For a random binary alloy AxB1−x , p(ni)

may be written as

pi(ni) = x δ(ni − 1) + (1 − x) δ(ni) (15)

where

ni =
{

1 for i = A

0 for i = B.

It immediately follows then thatpi(ni) satisfies the required conditions, namely∫
pi(ni)n

m
i dni = finite

for all m and

pi(ni) > 0.

For this pi(ni), M(i) is a tridiagonal matrix in a spaceφi of rank 2 spanned by|f i
0〉 and

|f i
1〉 with a representation

M(i) =
(

x
√

x(1 − x)√
x(1 − x) (1 − x)

)
in this basis.

The formalism now states that the configuration average over any functionH {xi} may
be written as ∫

P({xi})H {xi} d{xi} = 〈f |H̃ |f 〉 (16)

whereH̃ is the same functional operator of{M(i)} asH was of{xi}, and

|f 〉 = 5⊗|f i
0〉

is the configurationground state. Configuration averaging has been reduced to the problem
of finding the ground-statematrix element in the augmented space—an idea familiar in
quantum mechanical averaging.

5. Augmented-space recursion

It is clear from the discussion in the preceding two sections that, for a system described by a
disordered Hamiltonian, the recursion method defined on the augmented space enables one to
calculate the configuration-averaged Green function directly. The advantage of the method
is that it does not involve a single-site approximation or the solution of any self-consistent
equation (which would be required in the CPA or its generalizations). Furthermore, one
can treat both diagonal and off-diagonal disorder on an equal footing. In spite of its
immense potential the method could not be used for practical calculations because of
the large dimension of the augmented space:N × 2N for a system withN sites and
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disorder characterized by a binary probability distribution. However, in analogy to real-
space symmetry, if we exploit the symmetry of the augmented space which arises due to
the homogeneity of the disorder, then the rank of the augmented space is reduced and the
augmented-space recursion becomes tractable.

The starting point for the augmented-space recursion is the most localized sparse tight-
binding Hamiltonian derived systematically from the LMTO-ASA theory and generalized
to substitutionally disordered random binary alloys:

Hα
RL,R′L′ = ĈRLδRR′δLL′ + 1̂RLSα

RL,R′L′1̂R′L′ (17)

ĈRL = CA
RLnR + CB

RL(1 − nR) (18)

1̂RL = 1A
RLnR + 1B

RL(1 − nR). (19)

HereR denotes the lattice sites andL = (`m) are the orbital indices (for transition metal
` < 2). CA

RL, CB
RL and1A

RL, 1B
RL are the potential parameters of the constituents A and B

of the alloy. nR are the local site occupation variables which randomly take values 1 and
0 according to whether the site is occupied by an A atom or not. From the discussion in
section 4, it is clear that the representation of the Hamiltonian in the augmented spaceH̃

consists in replacing the local site occupation variables{nR} by {MR}, and is given by

H̃ =
∑
RL

(
CB

RLĨ + δCRL M̃R
)

⊗ a
†
RaR + . . .

+
∑
RL

∑
R′L′

(
1B

RLĨ + δ1RL M̃R
)

Sα
RL,R′L′

(
1B

R′L′ Ĩ + δ1R′L′ M̃R′) ⊗ a
†
RaR′

where

δCRL = (CA
RL − CB

RL) δ1RL = (1A
RL − 1B

RL).

Other parameters have their usual meaning andĨ is the identity operator defined in the
augmented space.̃MR in the second-quantized notation is given by

M̃R = xb
†
R0bR0 + (1 − x)b

†
R0bR0 +

√
x(1 − x)

(
b

†
R0bR1 + b

†
R1bR0

)
. (20)

(b
†
R0, bR0) and(b

†
R1, bR1) are the creation and annihilation operators in the augmented space,

where each site is characterized by two states (0, 1), which may be identified with the up
and down states of an Ising system. The configuration states are stored extremely efficiently
in bits of words and the algebra of the Hamiltonian in the configuration space mirrors the
multispin coding techniques used in numerical work on the Ising model.

The Hamiltonian is now an operator in a much enlarged space

8 = H ⊗ 5⊗φR

(the augmented space), whereH is thereal spacespanned by the countable basis set{|R〉}.
The enlarged Hamiltonian does not involve any random variables but incorporates within
itself the full information on the random occupation variables. If we substitute equation
(22) for MR, then with the aid of a little algebra we can show that the augmented-space
Hamiltonian contains operators of the following types as discussed in [28].

(a) a
†
RaR′ with R = R′ and R 6= R′ terms. The operators acting on a vector in

the augmented space change only the real-space label, but keep the configuration part
unchanged.

(b) a
†
RaR′b

†
kλbkµ with R = R′ andR 6= R′ terms.k is R or R′, while λ andµ may only

take the values 0 and 1. These operators acting on an augmented-space vector may change
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the real-space label (ifR 6= R′). In addition, they may also change the configuration at the
site R or R′ (if λ 6= µ). This resembles a single-spin-flip Ising operator in configuration
space.

(c) a
†
RaR′b

†
RλbRµb

†
R′νbR′ξ with λ, µ, ν, ξ taking the values 0 and 1. The operators may

change the real-space label (ifR 6= R′), as well as the configuration either atR or R′ or
both. This resembles a double-spin-flip Ising operator in the configuration space.

A basis |m〉 in the Hilbert spaceH is represented by a column vectorCm with zeros
everywhere except at themth position. The inner products are defined as

〈m| � |n〉 = CT
mCn a†

manCp = δnpCm.

A member of the basis in5⊗φR has the form|f 1
λ1

⊗ f 2
λ2

⊗ · · ·〉 where eachλi may be
either 0 or 1. We may represent this basis by a collection of binary words (strings of 0s
and 1s). In the usual terminology of the ASF the number of 1s defines the cardinality of
the basis and the sequence of positions at which we have 1s,{SC}, is called the cardinality
sequence and labels the basis. Thus a binary sequenceB[C, {SC}] is a representation of the
member of the basis in the configuration space. The dot product between the basis members
is then

B[C, {SC}] � B[C ′, {SC ′ }] = δCC ′δ{SCSC′ }.

A careful examination of the operations (a)–(c) defined on the configuration space reveals
that these operations change the cardinality and the cardinality sequence. Since the
operations are defined on the bits of words, one can easily employ the logical functions in
a computer to define these operations.

As mentioned earlier, symmetry considerations arising from the homogeneity of the
disorder may be employed to reduce the rank of the effective Hamiltonian in the augmented
space. The basic step in the symmetry procedure is to identify a set of non-equivalent
vectors and their weights. This can be achieved in the following way. Since the augmented
space is a direct product of the real space and the configuration space—which are disjoint—
symmetry operations on either of them apply independently of each other. For example,
if a site is occupied by an A atom, then all theZ configurations in whichZ − 1 of its
neighbours are occupied by A atoms and one is occupied by a B atom are equivalent. In
practice a site in the augmented space is chosen as|R, {C, [SC ]}〉. All of the equivalent
sites are obtained by the point group operation< on the site in question:

|R′, [C ′, {SC ′ }]〉 = <|R, [C, {SC}]〉 = |<R, <[C, {SC}]〉.
The number of distinct sites obtained in this way is the weighting of the site in question.
As in the real-space recursion only the non-equivalent (NE) sites obtained in this way are
retained for the purpose of recursion. Incorporating both the symmetry of the lattice and
the orbitals, the representation of the Hamiltonian matrix element is given by

〈RL, [C, {SC}]|H̃ |RL, [C, {SC}]〉 = [ξRC̄L + (1 − ξR)C̃L] (21)

where

I ≡ |R, L [C, {SC}]〉 ∈ NE

ξR = 1 R ∈ SC

ξR = 0 R 6∈ SC

C̄RL = xACA + (1 − xA)CB

C̃RL = (1 − xA)CA + xACB.
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The off-diagonal terms are

〈R′L′, [C ′, {SC ′ }]|H̃ |RL, [C, {SC}]〉
=

√
WI/WJ [ξRξR′1̄1/2SRR′1̄1/2 + · · ·

+ξR(1 − ξR′)1̄1/2SRR′1̃1/2 + (1 − ξR)ξR′1̃1/2SRR′1̄1/2 + · · ·
+(1 − ξR)(1 − ξR′)1̃1/2SRR′1̃1/2]βI (L, L′)δ[C,{SC }],[C ′{SC′ }] + · · ·
+

√
WI/WJ [ξR1̄1/2SRR′(δ1)1/2 + · · ·

+(1 − ξR)1̃1/2SRR′(δ1)1/2]βI (L, L′)δ[C,{SC }],[C ′+1,{SC′+1}] + · · ·
+

√
WI/WJ [(δ1)1/2SRR′(δ1)1/2]βI (L, L′)δ[C,{SC }],[C ′+2,{SC′+2}]

1̄RL = xA1A + (1 − xA)1B

1̃RL = (1 − xA)1A + xA1B

δ1 = 1A − 1B.

The angular momenta indices are suppressed for convenience. We denote byI and J

the augmented-space vectors|RL, [C, {SC}]〉 and |R′L′, [C ′, {SC ′ }]〉. β(L, L′) is 0 or
1 depending on whether or not the positionI is a symmetric position with respect to
the orbitalsL, L′ in augmented space. Once we have defined the Hamiltonian, and its
operation in augmented space, the recursion method on the augmented space gives the
configuration-averaged Green function directly. The recursion method for the calculation
of the configuration-averaged Green function〈GRL,RL(z)〉 is as follows. We first choose
the following as the starting state in our recursion:

|χi〉 = |i ⊗ L〉 ⊗ |ψ0〉.
The recursion coefficientsan andbn are generated by

H |un〉 = an|un〉 + bn+1|un+1〉 + bn|un−1〉
an = 〈χn| � H̃ |χn〉 bn = 〈χn−1| � H̃ |χn〉.

The continued-fraction coefficients are each generated to a finite numbers of steps and finally
appended with a suitable terminator as discussed earlier. The configuration-averaged Green
function is related to the density of states by

n(E) = − 1

Nπ
Im

∑
L

∑
R

〈GRL,RL(E + i0)〉. (22)

6. Results and discussion

The formalism developed in the previous section was applied in calculating the total and
local densities of states of random binary alloys at various concentrations. We now mention
some details concerning the numerical part of the problem. Total-energy density functional
calculations were performed for the elements. The Kohn–Sham equations were solved in
the local density approximation (LDA) [29]. The LDA was treated within the context of
the method of linear muffin-tin orbitals (LMTO) in the atomic-sphere approximation. The
computations were performed semi-relativistically using the exchange–correlation potential
of von Barth and Hedin [30]. The basis set was composed of` = 0, 1, 2 orbitals, so the
Hamiltonian elements are matrices of order nine. The elemental potential parameters were
used to parametrize the alloy Hamiltonian, incorporating the volume derivative correction for
changes with the lattice parameter. The flexibility of the choice of the Wigner–Seitz radius



Electronic structure of random binary alloys 1989

allowed us to take into account the charge self-consistency approximately as emphasized
by Kudrnovsḱy and Drchal [5]. For the purpose of augmented-space recursion, a four-
shell augmented-space map was generated from a cluster of 400 sites, with interactions
up to second-nearest neighbours for the bcc structure and up to nearest neighbours for the
most closely packed fcc-based structures. We have calculated the component and total
densities of states through the recursion method with eight pairs of recursion coefficients
and terminated with the Luchini–Nex terminator [26]. In some typical cases, such as in
CuZn with a low concentration of one constituent, where there are distinct impurity bands,
the recursion coefficients were calculated in ten steps. For pure elements, since the densities
of states have considerable structure, we employed 15 recursion steps. We have shown in
our previous communication [31] that this optimum choice reproduces densities of states
comparable to those obtained by other methods.

In the present communication we have studied two fcc-based alloy systems: AgPd and
Cu-rich CuZn; and two bcc-based alloy systems: FeTi and Zn-rich CuZn. Our results are
discussed below.

Figure 1. The total (solid) and partial densities of states of Ag (dotted) and Pd (dashed) in
AgxPd1−x alloys. The concentrations are from top to bottom:x = 1.0, 0.75, 0.5, 0.25 and 0.
The vertical lines show the position of the Fermi energy.
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6.1. AgPd

AgPd is one of the typical alloy systems where the disorder is dominated by the diagonal
part of the Hamiltonian. Both constituents have roughly the same d-band widths. Since
they belong to the same row of the periodic table, they have very little mismatch in atomic
sizes. The alloy remains fcc throughout the concentration regime. Furthermore, since the
effect of off-diagonal disorder is weak in this alloy system, the calculations based on the
CPA provide good results. Figure 1 shows the total and the component densities of states
for the AgxPd1−x random systems. Earlier work had looked at the AgPd alloys using the
KKR-CPA [32] and the LMTO-CPA [5]. X-ray photoelectron spectra data are available for
these alloys [33]. The spectra show a distinct Pd-based impurity peak at around 0.14 Ryd
below the Fermi level for low concentrations of Pd and a distinct Ag-based impurity peak
at around 0.4 Ryd below the Fermi level for low concentrations of Ag. If we compare
our results with figure 3 for the LMTO-CPA in [5] we note that, for all the concentrations
quoted, there is close agreement both as regards the dominant peak positions and as regards
the general shape of the density of states. Comparison with the KKR-CPA results shows
that though the peak positions match reasonably well with ours, the KKR-CPA impurity
peaks are much better resolved from the host density of states. The same trend is seen in
the experimental results. This comparison indicates that the poor resolution of the impurity
peaks is probably not a consequence of the CPA configuration-averaging procedure. It
probably arises from the approximations involved in the TB-LMTO method. For AgPd,
where the Wigner–Seitz radii of the two constituents are almost the same, we expect the
KKR method to be the more accurate band-structure scheme. Table 1 compares the impurity
peak positions for the various methods to illustrate our point.

Table 1. Impurity peak positions in Ryd, relative to the Fermi level, for various Ag
concentrations in AgPd alloys, obtained by various methods.

KKR-CPA LMTO-CPA LMTO-ASR Experiment

80% 75% 75% 75%
0.139 0.13 0.13 0.147

20% 25% 25% 25%
0.42 0.38 0.34 0.40

6.2. CuZn

CuZn is an important alloy system with both diagonal and off-diagonal disorder.
Furthermore, since the centres of the Cu d band and Zn d band are well apart, in the low-
concentration limits of Cu and Zn we have impurity bands. It is well known that mean-field
theories like the CPA theory do not reproduce the fine structure observed in the impurity
bands. Dean [34] first demonstrated the existence of such structure by computer simulation
experiments. Careful analysis identified these structures as arising from resonant scattering
from clusters of different sizes and shapes immersed in the infinite matrix. The dominant
contribution comes from the pair cluster with the characteristic bonding and antibonding
peaks. The CPA, being a single-site approximation, cannot reproduce these structures. This
analysis was carried out in detail in an earlier paper [35]. This system provides a testing
ground of our methodology which takes us beyond the CPA.

If we carefully examine the phase diagram of CuxZn1−x alloy, we find that it is
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dominated by several ordered structures along with both fcc (α) and bcc (β) solid solutions.
In our calculation we will assume fcc (α) solid solutions forx > 0.5 and bcc (β) solid
solutions forx < 0.5. For x = 0.5 one has the well knownβ-brass, forx = 0 the hcp Zn
and forx = 1.0 the fcc Cu structure.

Figure 2. The total density of states for CuxZn1−x alloys:
(a) bcc with x = 0.1; (b) bcc with x = 0.5; (c) fcc with
x = 0.75; and (d) fcc withx = 0.9.

Figure 2 shows the total and the local densities of states for the CuxZn1−x alloy for
x > 0.5 where the lattice structure is taken as fcc and forx < 0.5 with the alloy assumed
to be in a bcc phase. We find that the large differences among the d-band centres of the
constituents and the differences among their widths get reflected in the densities of states.
We notice that the density of states in the bcc phase has similar features to that for the fcc
structure.

Figure 3(a) shows the CuxZn1−x alloy with x = 0.9. The dotted curve was obtained
by a four-step recursion, and invoking a moment argument one can compare this result
with the characteristic featureless CPA density of states. The solid one was obtained by
a ten-step augmented-space recursion. In order to look slightly deeper into the origins of
the structures in the impurity band, we have shown in figure 3(b) the density of states of
a single Zn atom immersed in the alloy together with the single-atom d-state energy level
(−0.625 Ryd). In figure 3(c) we have shown a cluster of 13 zinc atoms (one central and its
twelve nearest neighbours) immersed in the alloy medium. The single immersed impurity
shows a featureless band formed from the single-atom impurity level, shifted slightly due
to crystal-field effects and broadened due to its immersion in the alloy. For the embedded
cluster the impurity band already shows the two-peaked structure apparent in figure 3(a),
reminiscent of zinc–zinc bonding and antibonding states immersed in an alloy medium. In
figure 3 (right-hand panel) we have plotted the density of states for CuxZn1−x alloy with
x = 0.1 and we observe the same cluster effects at the Cu site.
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Figure 3. (a) The partial density of states at the Cu site in bcc CuxZn1−x with x = 0.9 (dotted)
from the CPA (full) ASF calculation with ten recursion steps. (b) The partial density of states of
a single Zn atom immersed in the alloy medium. The arrow marks the d-state energy level of a
single zinc atom. (c) The partial density of states at the central zinc site of a nearest-neighbour
zinc cluster (13 atoms) immersed in the alloy medium. Right-hand panel: the partial density of
states at the Zn site in fcc CuxZn1−x with x = 0.9 (dotted) from the CPA (full) ASF calculation
with ten recursion steps.

6.3. FeTi

TiFe alloy exhibits strong diagonal disorder and non-negligible off-diagonal disorder, and
the constituent atoms have very different sizes. Such differences in constituent radii lead to
local lattice distortion effects in this alloy system. We shall take up this problem in a later
communication. The bcc disordered phase exists in Ti-rich alloys with concentration of Ti
>0.77, and forx = 0.5 the ordered CsCl phase is known to exist and is found to be very
stable. We have calculated the density of states of disordered TiFe by augmented-space
recursion in the bcc phase at various concentrations. Theoretical band-structure calculations



Electronic structure of random binary alloys 1993

for TiFe are available for both the TB-LMTO-CPA [5] and the KKR-CPA [36].
In order to see the effect of disorder on the density of states of TiFe we have shown

in figure 4 (top panel) the density of states of ordered 50–50 TiFe in the CsCl structure
obtained by the LMTO method. We find that the d-band complex due to Fe and Ti breaks
into two gaps, separated by a deep minima where the Fermi energyEF falls. The lower
states are predominantly Fe d states while the states above minima are mostly Ti d states.
Furthermore, the states lying below the minimum may be interpreted as Fe–Ti bonding states
while those above the minimum are the antibonding states. Since the bonding states are
filled, the ordered system is energetically favoured. If we compare this with the KKR-CPA
calculations, we find that there is marked broadening of all the structures which is a clear
indication of strong-disorder scattering. The most interesting effect is the suppression of the
gap atE = EF . This suggests that many filled (unfilled) levels have been raised (lowered)
in energy, so the energy of the disordered phase is higher. In figure 4 (bottom panel) we
have presented our ASR calculations for TixFe1−x at various concentrations (from top to
bottomx = 1.0, 0.5, 0.2, 0.0). We find that the gap in the density of states disappears due
to disorder scattering, analogously to the KKR-CPA result. A similar feature is observed in
TB-LMTO-CPA calculations.

Our preliminary calculation excluding lattice relaxation effects and proper treatment
of the charge-transfer effect shows that the results compare satisfactorily with earlier
calculations, proving the applicability of the methodology to different alloy systems.

7. Conclusions

The calculation scheme developed in this work is based on three methodologies: (i) the
TB-LMTO method for the description of the Hamiltonian; (ii) the augmented-space theorem
for the configuration averaging; and (iii) the recursion method applied to augmented space
to obtain the configuration-averaged Green function.

The TB-LMTO Hamiltonian is free from fitted parameters. The potential parameters
entering into the Hamiltonian are derived self-consistently. However, it carries with it
the approximations involved in the linearization which leads to the LMTO. The recursion
method requires the use of a sparse Hamiltonian. We have to base our method on a less
accurate Hamiltonian (with a truncation of the infinite series (7)) than the Hamiltonian in
the so-calledγ -representation used in the CPA calculations. However, Nowaket al [16]
have shown that the calculations for the density of states converge rapidly as we take more
terms in the series in equation (7).

The configuration-averaging scheme is based on the augmented-space theorem, which is
formally exact. The use of the recursion technique with suitable terminators applied to the
augmented space, so constructed, ensures that the TB-LMTO-ASR Green functions retain the
essentialherglotzanalytic properties. In addition, the method can take into account cluster
effects, off-diagonal effects arising due to disorder in the structure matrix, and correlated
disorder [37].

The recursion method carries errors which are dependent on the finite cluster size and
the nature of terminators used, both of which cause the electrons to experience a medium
that deviates from the intended structures away from the central sites [15]. The choice
of proper terminators partially solves the problem and one should choose larger clusters
with greater numbers of recursion steps for more accuracy. The recursion method is a well
established procedure that has been proven to produce a very accurate density of states for
d bands for 8 to 15 recursion steps (that is, it yields 16 to 30 moments of the density of
states exactly).
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Figure 4. Top panel: the density
of states for ordered 50–50 FeTi alloy
calculated by the TB-LMTO method
(taken from [36]). Bottom panel: the
total (solid) and partial densities of
states of Ti (dotted) and Fe (dashed) in
FexTi1−x alloys. The concentrations are
from top to bottom:x = (a) 1.0, (b) 0.5,
(c) 0.2 and (d) 0. The vertical lines show
the position of the Fermi energy.
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In summary, we should like to propose the TB-LMTO-ASR technique as a simple,
accurate and computationally efficient method for the first-principles calculation of the
electronic structure of disordered solids.
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